
z/OS

SQL Tuning that Still

Works Sheryl Larsen, BMC

Even with the Intelligence
of Db2zAI

SELECT O.ORDERID, C.CUSTOMERID,
 B.BILL, SUM(B.AMOUNT) AS TOTAL

FROM ORDER O, CUSTOMER C, BILL B

WHERE B.DATE > ‘01-01-2017’

 AND O.ODERID = C.ORDERID

 AND C.CUSTOMERID = B.CUSTOMERID

GROUP BY O.ORDERID, C. CUSTOMERID, B.BILL

ORDER BY TOTAL DESC

First SQL Class Db2 V1

1984

• No internet

• No iPhone

• No laptop

• No ear buds

• No email

• No …….

•lwaux (Load Word Algebraic with

Update Indexed) instruction

•lwax (Load Word Algebraic Indexed)

instruction

•lwbrx or lbrx (Load Word Byte-Reverse

Indexed) instruction

•lwz or l (Load Word and Zero)

instruction

•lwzu or lu (Load Word with Zero

Update) instruction

•lwzux or lux (Load Word and Zero with

Update Indexed) instruction

•lwzx or lx (Load Word and Zero

Indexed) instruction

https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwaux_lwa_ui_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwaux_lwa_ui_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwaux_lwa_ui_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwaux_lwa_ui_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwax_ind_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwax_ind_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwax_ind_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwax_ind_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwz_lwo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwz_lwo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwz_lwo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwz_lwo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzux_lux_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzux_lux_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzux_lux_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzux_lux_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzx_lx_lwzi_instrus.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzx_lx_lwzi_instrus.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzx_lx_lwzi_instrus.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzx_lx_lwzi_instrus.html?view=kc

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, ORDER BY,
Complex Correlation, Global Temporary Tables, CASE, 100+ Built-in Functions including
SQL/XML, Limited Fetch, Insensitive Scroll Cursors, UNION Everywhere, MIN/MAX
Single Index, Self Referencing Updates with Subqueries, Sort Avoidance for ORDER BY,
and Row Expressions, 2M Statement Length, GROUP BY Expression, Sequences,
Scalar Fullselect, Materialized Query Tables, Common Table Expressions, Recursive
SQL, CURRENT PACKAGE PATH, VOLATILE Tables, Star Join, Sparse Index, Qualified
Column names, Multiple DISTINCT clauses, ON COMMIT DROP, Transparent ROWID
Column, Call from trigger, statement isolation, FOR READ ONLY KEEP UPDATE
LOCKS, SET CURRENT SCHEMA, Client special registers, long SQL object names,
SELECT from INSERT, UPDATE or DELETE, INSTEAD OF TRIGGER, SQL PL in
routines, BIGINT, file reference variables, XML, FETCH FIRST & ORDER BY in subselect
& fullselect, caseless comparisons, INTERSECT, EXCEPT, MERGE not logged tables,
OmniFind, spatial, range partitions, data compression, DECFLOAT, optimistic locking,
ROLE, TRUNCATE, index & XML compression, created temps, inline LOB, administrative
privileges, implicit cast, increased timestamp precision, currently committed, moving sum
& average, index include columns, row and column access controls, time travel query,
GROUPING SETS, ROLLUP, CUBE, global variables, Text Search functions, accelerated
tables, DROP COLUMN, array data type, XML enhancements, moving SUM/AVG, …

1984

1989

2003

2010

2015

2019

35
Y
E
A
R
S

Fast Forward

Optimizer

Cost based Optimizer figures out how to get the data

Optimizer

6

Directory

Work

Files

Buffer Pool

SQL

Catalog

Data

Buffer Manager

Result

DB2 Engine Components

Stage 2

Index

Stage 1

SQL Execution

Directory

Catalog

Access Plans

Meta Data

Optimizer

RID
Pool

RIDs

Dynamic Statement

Cache

Top of Index
tree cache

Meta Data – Everything known about each object

Catalog
Meta Data Catalog

Meta Data

Work

Files

Buffer Pool

SQL

Catalog

Data

Catalog
Meta Data

Stored in the Catalog
Optimizer

Optimizer reads all information
needed to calculate cost $

Static SQL Access Plans Stored in Directory

Catalog
Meta Data Catalog

Meta Data

Work

Files

Buffer Pool

SQL

Catalog

Data

Catalog
Meta Data

Optimizer

Directory

Access Plans

BINDing is
what puts
the access
path in the
Directory

Dynamic SQL is stored in the Dynamic Statement Cache
SQL

Dynamic Statement

Cache

Optimizer

Directory
Access Plans

Access Plans BIND done
automatically
at run time

Execution time is when the Access Plan is given to the Buffer
Manager

Buffer Pool

Buffer Manager
Access Plans

Data Index

Buffer Pool stores data in memory

Buffer Pool

Buffer Manager

Directory

Work

Files

Buffer Pool

SQL

Catalog

Data Index

Stage 1 & 2 filter the data

Buffer Pool

Buffer Manager

Directory

Work

Files

Buffer Pool

SQL

Catalog

Data Index

Stage 2

Stage 1

Predicate Type

Indexable Stage 1

 COL <> value N Y

 COL <> noncol expr N Y

COL NOT BETWEEN value1
AND value2

N Y

COL NOT BETWEEN noncol
expr1 AND noncol expr2

N Y

COL NOT IN (list) N Y

COL NOT LIKE ' char' N Y

COL LIKE '%char' N Y

COL LIKE '_char' N Y

T1.COL <> T2.COL N Y

T1.COL1 = T1.COL2 N Y

COL <> (non subq) N Y

COL IS DISTINCT FROM N Y

13

Stage 1 Predicates

1. Indexable = The predicate is applied to the root page of the

chosen index. When the optimizer chooses to use a

predicate in the probe of the index, the condition is named

Matching (matching the index). This is the first point that

filtering is possible in DB2.

2. Index Screening = The Stage 1 predicate is a candidate

for filtering on the index leaf pages. This is the second

point of filtering in DB2. If partitioned filters limiting

partitions are also applied

3. Data Screening = The Stage 1 predicate is a candidate for

filtering on the data pages. This is the third point of filtering

in DB2.

4. Stage 2 = The predicate is not listed as Stage 1 and will be

applied on the remaining qualifying pages from Stage 1.

This is the fourth and final point of filtering in DB2.

Indexable Stage 1
Predicates

Predicate Type Indexable Stage 1

COL = value Y Y

COL = noncol expr Y Y

COL IS NULL Y Y

COL op value Y Y

COL op noncol expr Y Y

COL BETWEEN value1 AND
value2

Y Y

COL BETWEEN noncol expr1
AND noncol expr2

Y Y

COL LIKE 'pattern' Y Y

COL IN (list) Y Y

COL LIKE host variable Y Y

T1.COL = T2.COL Y Y

T1.COL op T2.COL Y Y

COL=(non subq) Y Y

COL op (non subq) Y Y

COL op ANY (non subq) Y Y

COL op ALL (non subq) Y Y

COL IN (non subq) Y Y

COL = expression Y Y

(COL1,...COLn) IN (non subq) Y Y

(COL1, …COLn) = (value1,
…valuen)

Y Y

T1.COL = T2.colexpr Y Y

COL IS NOT NULL Y Y

COL IS NOT DISTINCT FROM
value

Y Y

COL IS NOT DISTINCT FROM
noncol expression

Y Y

COL IS NOT DISTINCT FROM
col expression

Y Y

COL IS NOT DISTINCT FROM
non subq

Y Y

T1.COL IS NOT DISTINCT
FROM T2.COL

Y Y

T1.COL IS NOT DISTINCT
FROM T2.col expression

Y Y

Predicate Type

Indexable Stage 1

 COL <> value N Y

 COL <> noncol expr N Y

COL NOT BETWEEN value1
AND value2

N Y

COL NOT BETWEEN noncol
expr1 AND noncol expr2

N Y

COL NOT IN (list) N Y

COL NOT LIKE ' char' N Y

COL LIKE '%char' N Y

COL LIKE '_char' N Y

T1.COL <> T2.COL N Y

T1.COL1 = T1.COL2 N Y

COL <> (non subq) N Y

COL IS DISTINCT FROM N Y

1. Indexable Stage 1 Probe

2. Stage 1 Index Filtering

3. Stage 1 Data Filtering

4. Stage 2
Type 2 Index

Leaf Page

o o o o o o

Leaf Page

o o o o o o

Leaf Page

o o o o o o

Non-Leaf Page

O O O

Leaf Page

o o o o o o

Leaf Page

o o o o o o

Non-Leaf Page

O O

Leaf Page

o o o o o o

Leaf Page

o o o o o o

Leaf Page

o o o o o o

Leaf Page

o o o o o o

Non-Leaf Page

O O O O

Root Page

O O O
C1.C2.C3

4

1

2

3

TOKEN_NR.

ROLE_CD

WHERE C.LAST_NM LIKE ?

C.TOKEN_NR =

 B.TOKEN_NR

AND C.ROLE_CD > ?

AND CASE C.SEX WHEN ‘X’

THEN ? END) = ‘ABCDE’

Four Points of Filtering

15

4K

Work

Files

Filtering – z/OS

Buffer Manager

Data Index

Buffer Pool

Stage 2

Stage 1

c1c2c3

c4c5c6

WHERE C1 = ?
AND C2 > ?
AND C3 < ?
AND C4 = ?
AND C5 BETWEEN ? AND ?
AND C6 IN (?, ?, ?)
ORDER BY C1, C2, C3

If a Sort is needed for ORDER BY/GROUP BY

Buffer Pool

Buffer Manager

Directory

Work

Files

Buffer Pool

SQL

Catalog

Data Index

Stage 2

Stage 1

Work Files are
filled with the
remaining
result data
and sorted …
sometimes

The Result is brought back in memory

Buffer Pool

Buffer Manager

Directory

Work

Files

Buffer Pool

SQL

Catalog

Data Index

Stage 2

Stage 1

Result

Data is sent
to calling
program

18

Directory

Work

Files

Buffer Pool

SQL

Catalog

Data

Buffer Manager

Result

Calling Source may be Remote

Stage 2

Index

Stage 1 Directory

Catalog

Access Plans

Meta Data

Optimizer

RID
Pool

RIDs

Dynamic Statement

Cache

Top of Index
tree cache

Network

19

Directory

Work

Files

Buffer Pool

SQL

Catalog

Data

Buffer Manager

Result

What Could Go Wrong?

Stage 2

Index

Stage 1 Directory

Catalog

Access Plans

Meta Data

Optimizer

RID
Pool

RIDs

Dynamic Statement

Cache

Data gets disorganized Wrong Indexes

Sort Work blows up!

Bad SQL goes in

Bad Access
Plans get chose

• Review of what Db2zAI can and cannot do

• How to change the optimizers mind
 Case Studies Using a Proven Method

 Extreme Tuning

• How to put a query on a diet

• What other query attributes are red flags to optimal
performance?

Agenda

The Db2 Optimizer
How Does it Decide so Fast?

Good Input
– 35 years of catalog statistics refinement

– Ability to use some real time information

– Ability to refine scope of data collection - STATSFEEDBACK

Cost-based Smarts
– 35 years of algorithm refinement

– Creates a cost model for every query

– Defaults are used when query values are unknown

How close does the optimizer get with ‘?’ or ‘:hv’?

22 © Copyright 2018 BMC Software, Inc.

The Trillions of Optimizer Cost-based Results

Good for Everybody Great for a Few

Default Statistics

COLCARDF Factor for <, <=, >, >= Factor for LIKE or BETWEEN

>=100,000,000 1/10,000 3/100,000

>=10,000,000 1/3,000 1/10,000

>=1,000,000 1/1,000 3/10,000

>=100,000 1/300 1/1,000

>=10,000 1/100 3/1,000

>=1,000 1/30 1/100

>=100 1/10 3/100

>=2 1/3 1/10

=1 1/1 1/1

<=0 1/3 1/10

WHERE BETWEEN ? AND ? WHERE >?

How Close to Reality?

24 © Copyright 2/26/2021 BMC Software, Inc. - BMC Confidential—Internal Use Only

There Are Many Ways to Get to Your Data

Direct Row

Table Scan

Matching Index

Limited Partition Scan

Merge Join

Pair Wise Star Join

Hybrid Join Type N

Merge Scan Join

Table Scan

Multiple Index Access

Hybrid Join Type C

Sparse Index

NPI

List Prefect

NonMatching Index

Nested Loop Join

One Fetch

Table Scan

IN(Iist)

The Answer: Personalize Your Optimizer

Built on top of the IBM Machine Learning for z/OS (MLz) stack

 Leverages MLz services without requiring data scientist support –
Db2 generates model training data, deploys and monitors

 and retrains models via MLz services

• Db2ZAI product ID: 5698-CGN

Technology needed:
• Learns patterns from workload data collected in your unique operating environment

• Uses derived insight in determining optimal access paths for SQL statements

26 © Copyright 2018 BMC Software, Inc.

27 © Copyright 2018 BMC Software, Inc.

IDEA: Augment the Db2 Z Optimizer with AI/Machine
Learning!

1. Correct estimates used for :hv and ?
2. Add OPIMIZE FOR n Rows when # of rows fetched is

learned
3. Examine Sort behavior to optimize memory usage
4. Optimize parallelism in packages using history

The Db2 Z Optimization Team Took Action:
https://www.ibm.com/support/knowledgecenter/en/SSGKMA
_1.2.0.2/src/ai/ai_home.html

IBM Db2® AI for z/OS® aka Db2zAI

VDS – Virtual Data Scientist
• Has the data

• Catalog statistics

• Deep execution statistics

• History

• Knows which algorithm to use

• Classification for known patterns

• Linear Regression for Date/Time
sequencing

• Models for random behavior

Learns from modeling and
scoring

• Watches 100 executions

Provides solutions

• A list of ready packages

• Db2ZAI SQL Performance
dashboard

Cleans up after itself

• Keep models current and
removes old behavior

29 © Copyright 2018 BMC Software, Inc.

Fill in Unknown Values - :hv or ?
Customized Filter Factors

For STATIC use REBIND
For DYNAMIC uses PREPARE

PACKAGE Selection Screen
INCLUDE/EXCLUDE
Recommended List

Learn from the workload …..

Applies To
Any query with :hv or ?

30 © Copyright 2018 BMC Software, Inc.

Predict # of Rows Qualifying

Input
Track last fetched + SQLCODE

Repeat 100 times
Take AVG #

Applies To
Queries qualifying many rows,

But retrieving only a few

OPTIMIZE FOR n ROWS

31 © Copyright 2018 BMC Software, Inc.

Optimize Sort Tree Usage and Memory

SQL with DISTINCT
ORDER BY or FETCH FIRST large rows
Any > 4K row sort

Fill in Tree
Swap

Swap
Swap If just REORG’d

No Swap

32 © Copyright 2018 BMC Software, Inc.

Optimize Parallelism in non-OLTP Queries

DEGREE = ‘ANY’

DSNZPARM CDDSSRDEF = ‘ANY’

Input
Transactions > 120ms

Never < 10ms

Output
Reduced ELAPSED

Reduced CPU

33 © Copyright 2018 BMC Software, Inc.

Db2ZAI: Augment the Db2 Z Optimizer with
AI/Machine Learning!

1. Fill in “unknown” values in queries – Use Classification, Linear
Regression and Model random behavior to correct estimates

2. Predict number of rows processed and add OPIMIZE FOR n =
Optimal Rows

3. Examine Sort behavior to optimize memory usage
4. Optimize Parallelism in non-OLTP packages

© copyright 2017 BMC

SQL Review Checklist
1. Examine Program logic

2. Examine FROM clause

3. Verify Join conditions

4. Promote Stage 2’s and Stage 1 NOTs

5. Prune SELECT lists

6. Verify local filtering sequence

7. Analyze Access Paths

8. Tune if necessary

© copyright 2017 BMC

SQL Tuning Examples

WHERE S.SALES_ID > 44

 AND S.MNGR = :hv-mngr

 AND S.REGION BETWEEN
 :hvlo AND :hvhi CONCAT ‘ ‘

35

SELECT S.QTY_SOLD, S.ITEM_NO
 , S.ITEM_NAME
FROM SALE S
WHERE S.ITEM_NO > :hv
ORDER BY ITEM_NO
FETCH FIRST 22 ROWS ONLY

No Operation

Limited Fetch

All the Possible Access Paths

36

Direct Row

Star

Merge Scan

Hybrid

Nested Loop

Partitioned Table Scan

Table Scan

Limited Partition Scan

With NPI

Limited Partition Scan

With Partitioning Index

Limited Partition Scan Using

 Non-partitioning index (NPI)

Multiple Index Access

List Prefetch

NonMatching

Index Access

Matching Index Access

One Fetch

IN(list) Index Access

Merge Scan

Star Join:

Cartesian or

Pair-wise

Hybrid Join:

Type C or

Type N

Nested Loop

Limited Partition Scan

Using Data Partitioned

Secondary Index (DPSI

Limited Partition Scan

Using Partitioning Index

Multiple Index Access

List Prefetch

NonMatching

Index Access

Matching Index Access

Sparse Index Access

One Fetch

IN(list) Index Access

(Bold names use an Index)

Makes
Dynamic

Access Path Analysis

The larger the graph and the more rows involved,
the more costly it is.

© copyright 2017 BMC

Tuning SQL
• FIND ALL Expensive Queries

---------+---------+---

PROGNAME PROCSU

---------+---------+---

EXPNPROG 121,059,664

EXPNPROG 21,059,664

ONESECPG 79,664

SUBSECPG 9,664

CHEEPPRG 64

FREEPROG 4

PROCSU is
Too Expensive to Calculate!

39

2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647
2,147,483,647

Tuning Techniques to Apply When Necessary

40

Experiment with Extreme Tuning Techniques

 DISTINCT Table Expressions

 Odd/old Techniques

 Anti-Joins

 Manual Query Rewrite

Learn Traditional Tuning Techniques

 OPTIMIZE FOR n ROWS

 No Ops

 Index & MQT Design

OPTIMIZE FOR n ROWS
FETCH FIRST n ROWS

• Both clauses influence the Optimizer
• To encourage index access and nested loop join

• To discourage list prefetch, sequential prefetch, and access
paths with Rid processing

• Use FETCH n = total rows required for set

• Use OPTIMIZE n = number of rows to send across network
for distributed applications

• Works at the statement level

41

© copyright 2017 BMC

Fetch First Example
 Optimizer choose List Prefetch Index

Access + sort for ORDER BY for 50,000
rows

 All qualifying rows processed
(materialized) before first row returned
= .81 sec

 <.1sec response time required

SELECT S.QTY_SOLD
 , S.ITEM_NO
 , S.ITEM_NAME
FROM SALE S
WHERE S.ITEM_NO > :hv
ORDER BY ITEM_NO

SELECT S.QTY_SOLD, S.ITEM_NO
 , S.ITEM_NAME
FROM SALE S
WHERE S.ITEM_NO > :hv
ORDER BY ITEM_NO
FETCH FIRST 22 ROWS ONLY

• Optimizer now chooses Matching Index Access
(first probe .004 sec)

• No materialization

• Cursor closed after 22 items displayed (22 *
.0008 repetitive access)

• .004 + .017 = .021 sec

No Operation (No Op)
• +0, CONCAT ‘ ‘ also –0, *1, /1

• Place no op next to predicate

• Use as many as needed

• Discourages index access, however, preserves Stage 1

• Can Alter table join sequence

• Can fine tune a given access path

• Can request a table scan

• Works at the predicate level

43

Does not Benefit

DB2 on Linux,

UNIX or

Windows

© copyright 2017 BMC

No Op Example CONCAT ‘ ‘

 Optimizer chooses Multiple Index
Access

 The table contains 100,000 rows and
there are only 6 regions

 Region range qualifies 2/3 of table

 <.1sec response time required

 No Op allows Multiple Index Access
to continue on first 2 indexes

 Two Matching index accesses, two
small Rid sorts, & Rid intersection

SELECT S.QTY_SOLD
 , S.ITEM_NO
 , S.ITEM_NAME
FROM SALE S
WHERE S.SALES_ID > 44
 AND S.MNGR = :hv-mngr
 AND S.REGION BETWEEN
 :hvlo AND :hvhi
ORDER BY S.REGION

SALES_ID.MNGR.REGION Index MNGR Index REGION Index

…….
FROM SALE S
WHERE S.SALES_ID > 44
 AND S.MNGR = :hv-mngr
 AND S.REGION BETWEEN
 :hvlo AND :hvhi CONCAT ‘ ‘
ORDER BY R.REGION

© copyright 2017 BMC

No Op Example - Scan

• If you know the predicates do very
little filtering, force a table scan

• Use a No Op on every predicate

• This forces a table scan

• FOR FETCH ONLY encourages
parallelism

• WITH UR for read only tables to
reduce CPU

SELECT S.QTY_SOLD
 , S.ITEM_NO
 , S.ITEM_NAME
FROM SALE S
WHERE S.SALES_ID > 44 +0
 AND S.MNGR = :hv-mngr CONCAT ‘ ‘
 AND S.REGION BETWEEN
 :hvlo AND :hvhi CONCAT ‘ ‘
ORDER BY S.REGION
FOR FETCH ONLY
WITH UR

SALES_ID.MNGR.REGION Index MNGR Index REGION Index

Should this be

Documented?

DISTINCT Table Expressions
• Table expressions with DISTINCT

• FROM (SELECT DISTINCT COL1 FROM T1 …..) AS STEP1 JOIN T2
ON … JOIN T3 ON ….

• Used for forcing creation of logical set of data
• No physical materialization if an index satisfies DISTINCT

• Can encourage sequential detection

• Can encourage a Merge Scan join

46

Buffer Pool

Data

Index

Work

File

STEP1 Physical

STEP1 Logical

© copyright 2017 BMC

DISTINCT Table Expressions Example

• SELECT Columns
FROM TABX, TABY,
 (SELECT DISTINCT COL1, COL2 …..
 FROM BIG_TABLE Z
 WHERE local conditions) AS BIGZ
WHERE join conditions

 Optimizer is forced to analyze the table expression prior to
joining TABX & TABY

47

© copyright 2017 BMC

Typical Join Problem
SELECT COL1, COL2 …..

FROM ADDR, NAME, TAB3, TAB4, TAB5, TAB6, TAB7 WHERE
join conditions

 AND TAB6.CODE = :hv

 Result is only 1,000 rows

 ADDR and NAME first two tables in join

 Index scan on TAB6 table
• Not good because zero filter

Cardinality 1

© copyright 2017 BMC

Tuning Technique
SELECT COL1, COL2 …..

FROM ADDR, NAME,

 (SELECT DISTINCT columns

 FROM TAB3, TAB4, TAB5, TAB6, TAB7

 WHERE join conditions

 AND (TAB6.CODE = :hv OR 0 = 1))
 AS TEMP

WHERE join conditions

Keeps large tables

joined last

Gets rid of Index Scan

50

Put a Query on a Diet
For Extreme Cases

(used on all platforms)

A Typical Data Warehouse Query
• Initial cost of 16 million timerons

• WOULD NOT FINISH!

• A DISTINCT table expression and GROUP BY

• Initial join involved all columns and all rows

• The very wide and very deep set was dragged through
many more query steps

52

Before and After

LEFT JOIN

(SELECT

FROM

LEFT JOIN

(SELECT DISTINCT

FROM

INNER

JOIN

INNER

JOIN

(SELECT Lots of Columns

FROM

LEFT JOIN

SELECT

FROM

LEFT JOIN

SELECT

FROM

INNER

JOIN

INNER

JOIN

(SELECT

FROM

(SELECT

FROM

)

SELECT Lots of Columns

FROM

))

(SELECT

FROM

GROUP BY))

GROUP BY)))

53

Tuning Technique

• Extreme Cross Query Block Optimization
• Identify and pre-qualify the core set of data and only select the keys

early on
• Once all the steps are complete, go back and get the remaining

columns
• Referred to as “Group By Push Down” and “put your query on a diet”

• Keeping it thin through the DB2 engine

• Brought cost down to 270,000 timerons
• Query now finishes in 4 minutes!

What other query attributes are red flags
 to optimal performance?

What ever Tony said!

© copyright 2017 BMC

SQL Tuning Confidence Level

0% -- 100%

Speaker: Sheryl Larsen

Company: BMC

Email Address:

 sheryl_Larsen@bmc.com

Don’t forget to fill out a session evaluation!

