| D U GvirTUAL

2021 Australasia Db2 Tech Conference

First SQL Class Db2 V1

SELECT O.ORDERID, C.CUSTOMERID,
B.BILL, SUM(B.AMOUNT) AS TOTAL

FROM ORDER O, CUSTOMER C, BILL B
WHERE B.DATE > ‘01-01-2017’
AND O.ODERID = C.ORDERID

AND C.CUSTOMERID = B.CUSTOMERID
GROUP BY O.ORDERID, C. CUSTOMERID, B.BILL
ORDER BY TOTAL DESC

1984

* No internet
* No iPhone

* No laptop

* No ear buds
* No email

* No

https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwaux_lwa_ui_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwaux_lwa_ui_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwaux_lwa_ui_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwaux_lwa_ui_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwax_ind_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwax_ind_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwax_ind_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwax_ind_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwbrx_lbx_lwbri_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwz_lwo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwz_lwo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwz_lwo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwz_lwo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzu_lwzo_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzux_lux_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzux_lux_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzux_lux_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzux_lux_instrs.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzx_lx_lwzi_instrus.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzx_lx_lwzi_instrus.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzx_lx_lwzi_instrus.html?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_lwzx_lx_lwzi_instrus.html?view=kc

WIo>m=<Y

1984

1989

2003

2010

2015
2019

Fast Forward

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, ORDER BY,
Complex Correlation, Global Temporary Tables, CASE, 100+ Built-in Functions including
SQL/XML, Limited Fetch, Insensitive Scroll Cursors, UNION Everywhere, MIN/MAX
Single Index, Self Referencing Updates with Subqueries, Sort Avoidance for ORDER BY,
and Row Expressions, 2M Statement Length, GROUP BY Expression, Sequences,
Scalar Fullselect, Materialized Query Tables, Common Table Expressions, Recursive
SQL, CURRENT PACKAGE PATH, VOLATILE Tables, Star Join, Sparse Index, Qualified
Column names, Multiple DISTINCT clauses, ON COMMIT DROP, Transparent ROWID
Column, Call from trigger, statement isolation, FOR READ ONLY KEEP UPDATE
LOCKS, SET CURRENT SCHEMA, Client special registers, long SQL object names,
SELECT from INSERT, UPDATE or DELETE, INSTEAD OF TRIGGER, SQL PL in
routines, BIGINT, file reference variables, XML, FETCH FIRST & ORDER BY in subselect
& fullselect, caseless comparisons, INTERSECT, EXCEPT, MERGE not logged tables,
OmniFind, spatial, range partitions, data compression, DECFLOAT, optimistic locking,
ROLE, TRUNCATE, index & XML compression, created temps, inline LOB, administrative
privileges, implicit cast, increased timestamp precision, currently committed, moving sum
& average, index include columns, row and column access controls, time travel query,
GROUPING SETS, ROLLUP, CUBE, global variables, Text Search functions, accelerated
tables, DROP COLUMN, array data type, XML enhancements, moving SUM/AVG, ...

Cost based Optimizer figures out how to get the data

* The optimizer is responsible for
* Choosing the most efficient method of accessing the data for a given SQL statement

* Think of your transportation choices
» Start/end location, time of day, construction, traffic, available options/routes

All can impact the “quickest” route
—_—
R~
%&F ‘ \

DB2 Engine Components

Result SQL

Dynamic Statement|, Access Plans

= I Gt

Meta Data — Everything known about each object

SQL

tale

Meta Data

Buffer Pool

Optimizer reads all information T —
needed to calculate cost S

Static SQL Access Plans Stored in Directory

SQL

Buffer

;"v

BINDing is
what puts
the access
path in the
Directory

Dynamic SQL is stored in the Dynamic Statement Cache
SQL

m

Dynamic Statement = Access Plans
Cache

Access Plans BIND done
automatically
at run time

Execution time is when the Access Plan is given to the Buffer
Manager

Buffer Pool

Access Plans

Buffer Manager.

ot

Buffer Pool stores data in memory

SQL

Work
Files

l Catalog I
= =

IJirector‘
| Buffer Pool

Stage 1 & 2 filter the data

SOL

Files

Work I Stage 2 | Catalog I

Stage 1 'Directord
| Buffer Pool
R o]

)

—
==
Indexable Stage 1 = .
)
: = Stage 1 Predicates
redicates =
& = | Predicate Type Indexable | Stage 1
=
Predicate Type Indexable | Stage 1 |&—=<}
i 9 == | COL <>value N Y
COL = value Y Y ::: COL | N Y
COL = noncol expr Y Y =) <> noncol expr
COL IS NULL Y Y &—=3 | COL NOT BETWEEN valuel N Y
COL op value Y Y &—=2 | AND value2
o EE?SVECé).LeX?r S 7 7 g: COL NOT BETWEEN noncol N Y
value2 vaiue E:S exprl AND noncol expr2
COL BETWEEN noncol exprl Y Y — COL NOT IN (list) N Y
AND noncol expr2 &—=3 | COL NOT LIKE ' char' N Y
COL LIKE ‘pattern’ L4 Y &= | COL LIKE ‘%char’ N Y
EOL N Qinh) - M Y &= [COL LIKE _char’ N Y
COL LIKE host variable Y Y o — —
T1.COL = T2.COL Y Y o — T1.COL <i T2.COL N Y
T1.COL op T2.COL Y Y &—=2 | T1.COL1=T1.COL2 N Y
o oo v |E=] [CoL = (o subq) N Y
&—=3 | COL IS DISTINCT FROM N Y
COL op ANY (non subq) Y Y)
COL op ALL (non subq) Y Y o —) . . .
COL IN (non subq) Y Y E:S 1. Indexaple = The predicate is qpplled to the root page of the
COL = expression Y Y — chosen index. When the optimizer chooses to use a
(COL1,...COLN) IN (non subq) Y Y o — predicate in the probe of the index, the condition is named
(C‘?a']:;;)'co'-") = (value1, Y Y — Matching (matching the index). This is the first point that
“an — N
T1.COL = T2.colexpr vz ¥ — filtering is possible in DB2.
COL IS NOT NULL Y Y o —
COL IS NOT DISTINCT FROM Y Y E:f 2 Index Screening = The Stage 1 predicate is a candidate
\(/:aollliels NOT DISTINGT FROM v v E:} for filtering on the index leaf pages. This is the second
noncol expression 2’3 pom_t_of filtering in DBZ_. If partitioned filters limiting
COL IS NOT DISTINCT FROM Y Y o — partitions are also applied
col expression :’
CcoL 'SbNOT DISTINCT FROM Y Y == 3 Data Screening = The Stage 1 predicate is a candidate for
non subg == T L . . .
T1.COL 1S NOT DISTINGT v v E’S fllterlng on the data pages. This is the third point of filtering
FROM T2.COL = in DB2.
< =
T1.COL IS NOT DISTINCT Y Y —))) i
FROM T2.col expression == 4 Stage 2 = The predicate is not listed as Stage 1 and will be
=3 applied on the remaining qualifying pages from Stage 1.
== This is the fourth and final point of filtering in DB2.

(

B W e

Four Points of Filtering

WHERE C.LAST_NM LIKE ?

Indexable Stage 1 Probe C.JOKEN_NR =
B.TOKEN_NR

Stage 1 Index Filtering CD >2
Stage 1 Data Filtering AND LASE C.SEX WHEN X’

HEN ? END) \= ‘ABCDFE’
Stage 2

Non-Leaf Pgge
00O0Q

Non-Leaf Page Non-Leaf Page
000 00
Leaf Page Leaf Page Leaf Page Leaf Page Leaf Page Leaf Page Leaf Rage

ooooooMoooooOO@OOOOOCOMOWOOOOMOOOO0OOCOOMOOO0O0OOMMOOOCO

Leaf Page
000000

I e e .. T e e

Filtering — z/OS

WHERE C1 = ?

AND (C2>7?

AND (C3<?

AND C4=7 Buffer Manager clc2c3

AND C5 BETWEEN ? AND ?
AND C6IN (?,?,?)
ORDER BY C1, C2, C3

c4c5c6

If a Sort is needed for ORDER BY/GROUP BY

SQL

Work Files are
Work
filled with the Files lCatangI
remaining e
l)irector‘

result data

and sorted ...
sometimes Buffer Pool

The Result is brought back in memory

Data is sent

to calling
orogram = Result SQL

Source may be Remote
Result SOL

Network

What Could Go Wrong?

Result SOL

N gy |

Bad Access
Plans get chose

e Review of what Db2zAl can and cannot do

* How to change the optimizers mind
Case Studies Using a Proven Method

Extreme Tuning
* How to put a query on a diet

* What other query attributes are red flags to optimal
performance?

The Db2 Optimizer —

How Does it Decide so Fast?

Good Input

— 35 years of catalog statistics refinement
— Ability to use some real time information
— Ability to refine scope of data collection - STATSFEEDBACK

Cost-based Smarts

— 35 years of algorithm refinement

— Creates a cost model for every query
— Defaults are used when query values are unknown

b How close does the optimizer get with ‘?’ o

The Trillions of Optimizer Cost-based Results

© Copyright 2018 BMC Software, Inc.

Default Statistics

COLCARDF Factor for <, <=,>,>= Factor for LIKE or BETWEEN
>=100,000,000 1/10,000 3/100,000
>=10,000,000 1/3,000 1/10,000

CSSTO00000 11000 30000 =
>=100,000 1/300 1/1,000

>=10,000 1/100 3/1,000
>=1,000 1/30 1/100
>=100 1/10 3/100
>=2 113 1/10

=1 1N 1
<=0 113 1/10

There Are Many Ways to Get to Your Data

Matching Index Nested Loop Join

Multiple Index Access - -"7,,-/, IN(list)

Merge Join NonMatching Index

Limited Partition Scan
NPI

Direct Row
One Fetch
Pair Wise Star Join

Hybrid Join Type C
Table Scan Y P

Merge Scan Join Table Scan

Table Scan List Prefect

Hybrid Join Type N Sparse Index

The Answer: Personalize Your Optimizer

Technology needed:
* Learns patterns from workload data collected in your unique operating environment

* Uses derived insight in determining optimal access paths for SQL statements

Built on top of the IBM Machine Learning for z/OS (MLz) stack

Leverages MLz services without requiring data scientist support —
Db2 generates model training data, deploys and monitors
and retrains models via MLz services

e Db2ZAl product ID: 5698-CGN

IBM Db2 EEE

Al Makes Db2 =
Better, Smarter, . —
Faster

IBM Db2 AI for z/0S
#Db2ZAI

IDEA: Augment the Db2 Z Optimizer with Al/Machine
Learning!

b
1. Correct estimates used for :hv and ?
(y 2. Add OPIMIZE FOR n Rows when # of rows fetched is
learned
Examine Sort behavior to optimize memory usage
‘ F 4. Optimize parallelism in packages using history
- —.,,_ ; The Db2 Z Optimization Team Took Action:

N \ https://www.ibm.com/support/knowledgecenter/en/SSGKMA
- 1.2.0.2/src/ai/ai_home.html

.W

VDS — Virtual Data Scientist

Catalog statistics

Deep execution statistics Watches 100 executions

History
* Alist of ready packages

ol * Db2ZAl SQL Performance
Classification for known patterns gashboard

Linear Regression for Date/Time

sequencing * Keep models current and

Models for random behavior removes old behavior

Fill in Unknown Values - :hv or ?

Customized Filter Factors
For STATIC use REBIND
For DYNAMIC uses PREPARE

PACKAGE Selection Screen

INCLUDE/EXCLUDE
Recommended List

© Copyright 2018 BMC Software, Inc.

Learn from the workload

ORDER BY

:COL1-LAST
2 » :COL2-LAST

» +COL1-LAST))

)

\ 5 . 3 1.4
COL1,COL2, COLS,LULR

Applies To
Any query with :hvor?

29

"‘"5!
|
..'!llc.

[frerclf

Applies To
Queries qualifying many rows,
But retrieving only a few

Predict # of Rows Qualifying

OPTIMIZE FOR n ROWS

Input

Track last fetched + SQLCODE

Repeat 100 times
Take AVG #

© Copyright 2018 BMC Software, Inc.

30

Optimize Sort Tree Usage and Memory

SQL with DISTINCT
ORDER BY or FETCH FIRST large rows
Any > 4K row sort

Fill in Tree

Swap

If just REORG'd Swap Swap
No Swap

Optimize Parallelism in non-OLTP Queries

DEGREE = ‘ANY’

DSNZPARM CDDSSRDEF = ‘ANY’
Input | 3 s

Transactions > 120ms sc—"ES B
Never < 10ms

© Copyright 2018 BMC Software, Inc.

3)

Outg» ut

~ Reduced ELAPSED

Reduced CPU

: Augment the Db2 Z Optimizer with
Al/Machine Learning!

’o 1. Fill in “unknown” values in queries — Use Classification, Linear
Regression and Model random behavior to correct estimates
2. Predict number of rows processed and add OPIMIZE FOR n =

‘ F Optimal Rows
3. Examine Sort behavior to optimize memory usage
4. Optimize Parallelism in non-OLTP packages

SQL Review Checklist

1.

GOl

Examine Program logic

Examine FROM clause

Verify Join conditions

Promote Stage 2’s and Stage 1 NOTs
Prune SELECT lists

Verify local filtering sequence
Analyze Access Paths

Tune if necessary

SQL Tuning Examples

WHERE S.SALES_1ID > 44
AND S.MNGR = :hv-mngr

AND S.REGION BETWEEN)
:hvio AND :hvhi No Operation

SELECT S.QTY_SOLD, S.ITEM_NO
, S.ITEM_NAME
FROM SALE S
WHERE S.ITEM_NO > :hv
ORDER BY ITEM_NO
Limited Fetch

All the Possible Access Paths
Index ilable Join

One Fetch Limited Partition Scan Using \
IN(list) Index Access Non=partitioningiunadexs(NPl)

Matching Index Access Limited Partition Scan Hybrid Join:

oA . Type C or
Using Bartitioning inaex
Sparse Index Access J g il Type N

Limited Partition 'Scan Star Join:
Using Data Partitioned Cartesian or

NonMatching
Index Access

Seconaanyinaexi (bRPs| Pair-wise

nbz 11 List Prefetch

Multiple Index Access

Access Path Analysis

IDIXSCAN
100

22SQL120927102612500
SYSIEM

< GENROW (+5CUST_ORDER_HEADER
SYSIBM GOSALESCT

The larger the graph and the more rows involved,
the more costly it is.

Tuning SQL
* FIND ALL Expensive Queries

oo 5 SN N S LI |
PROGNAME PROCSU

NN N S TPy Ll I i [
EXPNPROG 121,059, 664
EXPNPROG 2R UlS SMIG1614
ONESECPG 79,6064
SUBSECPG 9,064
CHEEPPRG 64

FREEPROG 4

PROCSU is

Too Expensive to Calculate!

2,147,483 ,647

Tuning Techniques to Apply When Necessary

=
OPTIMIZE FOR n ROWS '__ m,
No Ops 1 0
P -lr :L

Index & MQT Design I i

.

A

»

DISTINCT Table Expressions
Odd/old Techniques
Anti-Joins

Manual Query Rewrite

OPTIMIZE FOR n ROWS v
FETCH FIRST n ROWS \%

* Both clauses influence the Optimizer
* To encourage index access and nested loop join

* To discourage list prefetch, sequential prefetch, and access
paths with Rid processing

e Use FETCH n = total rows required for set

e Use OPTIMIZE n = number of rows to send across network
for distributed applications

* Works at the statement level

Fetch First Example
Query #1

SELECT S.QTY_SOLD
; S.ITEM_NO
; S.JITEM_NAME

FROM SALE S
WHERE S.ITEM_NO > :hv
ORDER BY ITEM_NO

Query #1 Tuned

SELECT S.QTY_SOLD, S.ITEM_NGQ
; S.JITEM_NAME

FROM SALE S

WHERE S.ITEM_NO > :hv

ORDER BY ITEM_NO
FETCH FIRST 22 ROWS ONLY

Optimizer choose List Prefetch Index
Access + sort for ORDER BY for 50,000
rows

All qualifying rows processed
(materialized) before first row returned

<.1sec response time required

Optimizer now chooses Matching Index Access
(first probe .004 sec)

No materialization

Cursor closed after 22 items displayed (22 *
.0008 repetitive access)

.004 +.017 = .021 sec

No Operation (No Op)

e +0, CONCAT ‘ “ also -0, *1, /1

Place no op next to predicate

Use as many as needed

Discourages index access, however, preserves Stage 1
Can Alter table join sequence

Can fine tune a given access path

Can request a table scan ®

Works at the predicate level »

Does not Benefit
DB2 on Linux,

UNIX or
Windows

No Op Example CONCAT

SALES_ID.MNGR.REGION Index MNGR Index REGION Index

SELECT S.QTY_SOLD
;, SJITEM_NO
, SJITEM_NAME
FROM SALE S
WHERE S.SALES_ID > 44
AND S.MNGR = :hv-mngr
AND S.REGION BETWEEN
:hvio AND :hvhi

ORDER BY S.REGION

FROM SALE S
WHERE S.SALES_ID > 44
AND S.MNGR = :hv-mngr
AND S.REGION BETWEEN
thvio AND :hvhi CONCAT '
ORDER BY R.REGION

Optimizer chooses Multiple Index
Access

The table contains 100,000 rows and
there are only 6 regions

Region range qualifies 2/3 of table
<.1lsec response time required

No Op allows Multiple Index Access
to continue on first 2 indexes

Two Matching index accesses, two
small Rid sorts, & Rid intersection

No Op Example - Scan

SALES_ID.MNGR.REGION Index MNGR Index REGION Index

SELECT S.QTY_SOLD J If you know the predicates do very
, S_.ITEM_NO little filtering, force a table scan

; S.ITEM_NAME e UseaNo Op on every predicate
FROM SALE S

WHERE S.SALES_ID > 44 +0
AND S.MNGR = :hv-mngr CONCAT **' o FOR FETCH ONLY encourages
AND S.REGION BETWEEN parallelism
:hvlo AND :hvhi CONCAT '*
ORDER BY S.REGION J WITH UR for read only tables to
FOR FETCH ONLY reduce CPU
WITH UR

o This forces a table scan

Should this be

Documented?

DISTINCT Table Expressions AP

* Table expressions with DISTINCT é/

* FROM (SELECT DISTINCT COL1 FROM T1) AS STEP1 JOIN T2
ON ... JOINT3 ON

» Used for forcing creation of logical set of data
* No physical materialization if an index satisfies DISTINCT

e Can encourage sequential detection
* Can encourage a Merge Scan join

STEP1 Logical

DISTINCT Table Expressions Example

e SELECT Columns
FROM) ,
(SELECT DISTINCT COL1, COL2
FROM BIG_TABLE Z
WHERE local conditions) AS BIGZ
WHERE join conditions

= Optimizer is forced to analyze the table expression prior to
joining TABX & TABY

Typical Join Problem

SELECT COL1, COL2
FROM)) TABG, WHERE

join conditions
AB6.CODE

= Resultis only 1,000 rows
= ADDR and NAME first two tables in join

" |[ndex scan on JIAS table
* Not good because zero filter

TU AL g Te C h ni q ue Keeps large tables
SELECT COL1, COL2 | joined last

FROM ADDR;NAMEIIN—

(SELECT DISTINCT columns
FROM TABG6,
WHERE join conditions

AND (TAB6.CODE = :hv
AS TEMP

WHERE join conditions

Gets rid of Index Scan

Put a Query on a Diet

For Extreme Cases

(used on all platforms)

A Typical Data Warehouse Query

* Initial cost of 16 million timerons
e WOULD NOT FINISH!

* A DISTINCT table expression and GROUP BY
* Initial join involved all columns and all rows

* The very wide and very deep set was dragged through
many more query steps

Before and After

SELECT Lots of Columns
e e de
FROM
I (SELECT
INNER FROM
JOIN
T o
INNER
I(:SRE(ID_I\E/ICT JOIN -
SELECT
LEFT JOIN FROM
(SELECT DISTINCT
FROM LEFT JOIN
SELECT
LEFT JOIN FROM
I(:SRE(I)_SCT LEFT JOIN
(SELECT
FROM
GROUP BY)

GROUP BY))

Tuning Technique

* Extreme Cross Query Block Optimization

* Identify and pre-qualify the core set of data and only select the keys
early on

* Once all the steps are complete, go back and get the remaining
columns

 Referred to as “Group By Push Down” and “put your query on a diet”
* Keeping it thin through the DB2 engine

* Brought cost down to 270,000 timerons
* Query now finishes in 4 minutes!

What other query attributes are red flags
to optimal performance?

What ever Tony said!

SQL Tuning Confidence Level

0% ----mnmmmmmmmmemememneee-

Speaker: Sheryl Larsen
Company: BMC
Email Address:

sheryl Larsen@bmc.com

Don’t forget to fill out a session evaluation!

